题目内容
=3-+1-6
=-2-
一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( )
A.6 B.7 C.8 D.9
如图,在平面直角坐标系中完成下列各题:
(1)在图中作出关于轴对称的.
(2)在x轴上画出点P,使PA+PB的值最小。
(3)在x轴上画出点Q,使Q B1 +Q C的值最小
如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是( )
如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是 .
如图,在平面直角坐标系中,直线L是第一、三象限的角平分线.
(1)由图观察易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点、的位置,并写出他们的坐标: 、 ;
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);
(3)已知两点D(1,-3)、E(-1,-4),试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,最小值为 .
若一元二次方程x2+x-2=0的解为x1、x2,则x1•x2的值是 ( )
A.1 B.—1 C.2 D.—2
计算:
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.