ÌâÄ¿ÄÚÈÝ
6£®¶ÔÓÚÉú»îÖеÄһЩʵ¼ÊÎÊÌ⣬ÎÒÃÇҪѧ»á½¨Á¢ÊýѧģÐÍ£¬ÔËÓÃÊýѧ˼ÏëºÍ˼Ïë·½·¨È¥·ÖÎö¡¢È¥Ñо¿£¬´Ó¶øÊ¹ÎÊÌâ»ñµÃ½â¾ö£®ÈçÓÃË®ÇåÏ´Êß²ËÉϲÐÁôµÄũҩ£¬ÉèÓÃx£¨x¡Ý1£©µ¥Î»Á¿µÄË®ÇåÏ´ÒÀ´ÎÒÔºó£¬Êß²ËÉϲÐÁôµÄũҩÁ¿Óë±¾´ÎÇåϴǰ²ÐÁôũҩÁ¿Ö®±ÈΪ$\frac{1}{x+1}$£¬ÏÖÓÐa£¨a¨R2£©µ¥Î»Á¿µÄË®ÇåÏ´Ê߲ˣ¬ÓÐÁ½ÖÖ·½°¸£º·½°¸Ò»¡¢½«aµ¥Î»Á¿µÄˮһ´ÎÇåÏ´£»·½°¸¶þ¡¢°Ñaµ¥Î»Á¿µÄˮƽ¾ù·Ö³ÉÁ½·ÝºóÇåÏ´Á½´Î£®¼ÙÉèÇåϴǰÊß²ËÉϲÐÁôµÄũҩÁ¿Îª1£¬ÎÒÃÇ¿ÉÒÔ½¨Á¢ÏÂÃæ·ÖʽģÐÍ£¬Öð²½½â¾ö£º£¨1£©ÀûÓ÷½°¸Ò»ÇåÏ´ºóÊß²ËÉϲÐÁôµÄũҩÁ¿M=$\frac{1}{1+a}$£®
£¨2£©Çó³öÀûÓ÷½°¸¶þÇåÏ´ºóÊß²ËÉϲÐÁôµÄũҩÁ¿N£¨Óú¬aµÄ·Öʽ±íʾ£©
£¨3£©ÊÔÎÊÓÃÄÄÖÖ·½°¸ÇåÏ´ºóÊß²ËÉϲÐÁôµÄũҩÁ¿±È½ÏÉÙ£¿ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÉèÇåϴǰÊß²ËÉϲÐÁôµÄũҩÁ¿Îª1£¬·Ö±ðÓÃaµÄ´úÊýʽ±íʾÊß²ËÉϲÐÁôµÄũҩÁ¿£¬ÓÃaµ¥Î»Á¿µÄË®ÇåÏ´Ò»´Î£¬±íʾ³öÊß²ËÉϲÐÁôµÄũҩÁ¿ÎªM£»
£¨2£©°Ñaµ¥Î»Á¿µÄˮƽ¾ù·Ö³ÉÁ½·ÝºóÇåÏ´Á½´Î£¬±íʾ³öÊß²ËÉϲÐÁôµÄũҩÁ¿N£»
£¨3£©ÀûÓÃ×÷²î·¨±È½ÏMÓëN´óС¼´¿ÉµÃµ½½á¹û£®
½â´ð ½â£º£¨1£©ÉèÇåϴǰÊß²ËÉϲÐÁôµÄũҩÁ¿Îª1£¬·Ö±ðÓÃaµÄ´úÊýʽ±íʾÊß²ËÉϲÐÁôµÄũҩÁ¿£¬
ÓÃaµ¥Î»Á¿µÄË®ÇåÏ´Ò»´Î£¬Êß²ËÉϲÐÁôµÄũҩÁ¿ÎªM=$\frac{1}{1+a}$£»
¹Ê´ð°¸Îª£º$\frac{1}{1+a}$
£¨2£©°Ñaµ¥Î»Á¿µÄˮƽ¾ù·Ö³ÉÁ½·ÝºóÇåÏ´Á½´Î£¬
Êß²ËÉϲÐÁôµÄũҩÁ¿N=$\frac{1}{1+\frac{a}{2}}$•$\frac{1}{1+\frac{a}{2}}$=$\frac{1}{£¨1+\frac{a}{2}£©^{2}}$£»
£¨3£©¡ß£¨1+a£©-£¨1+$\frac{a}{2}$£©2=1+a-1-a-$\frac{{a}^{2}}{4}$=-$\frac{{a}^{2}}{4}$£¬
¡à1+a£¼£¨1+a£©2£¬
¡àP£¾Q£¬
Ôò·½°¸¶þ£ºÇåÏ´Á½´Î²ÐÁôµÄũҩÁ¿±È½ÏÉÙ£®
µãÆÀ ´ËÌ⿼²éÁË·ÖʽµÄ¼Ó¼õ·¨£¬ÒÔ¼°×÷²î·¨±È½Ï´óС£¬±íʾ³öMÓëNÊǽⱾÌâµÄ¹Ø¼ü£®
| A£® | ÕýÕûÊý¡¢¸ºÕûÊý¡¢·ÖÊýͳ³ÆÎªÓÐÀíÊý | B£® | ÕûÊý°üÀ¨ÕýÕûÊý¡¢0¡¢¸ºÕûÊý | ||
| C£® | ½üËÆÊý3.10¾«È·µ½ÁËÊ®·Öλ | D£® | -24µ×ÊýÊÇ-2£¬Ö¸ÊýÊÇ4 |
| A£® | ½Çƽ·ÖÏßÉϵĵ㵽½ÇÁ½±ßµÄ¾àÀëÏàµÈ | |
| B£® | Ï߶δ¹Ö±Æ½·ÖÏßÉϵĵ㵽ÕâÌõÏß¶ÎÁ½¶ËµãµÄ¾àÀëÏàµÈ | |
| C£® | ÔÚÖ±½ÇÈý½ÇÐÎÖУ¬30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßµÈÓÚб±ßµÄÒ»°ë | |
| D£® | ƽ·ÖÈý½ÇÐÎÄÚµÄÉäÏß½Ð×öÈý½ÇÐÎµÄ½ÇÆ½·ÖÏß |
| A£® | x3+x3=2x6 | B£® | x6¡Âx2=x3 | C£® | £¨-3x3£©2=3x6 | D£® | x3•x2=x5 |