题目内容
11.分析 在BD上取点E,使BE=AC,连接AE,可证四边形ACBE是平行四边形,又因为∠C=90°,所以四边形ACBE是矩形.因为BD=2AC,则可求得AB=AD,故三角形可判定.
解答 解:△ABD是等腰三角形.
理由如下:![]()
在BD上取点E,使BE=DE,连接AE,
∴BE=$\frac{1}{2}$BD,
∵BD=2AC,
∴BE=AC,
∵BD∥AC,
∴四边形ACBE是平行四边形,
∵∠C=90°,
∴四边形ACBE是矩形,
∴∠AEB=90°,
即AE⊥BD,
∴AB=AD,
∴△ABD是等腰三角形.
点评 本题综合考查了矩形的判定和平行四边形的性质,解本题要充分利用条件,选择适当的方法证明是等腰三角形.
练习册系列答案
相关题目