题目内容

精英家教网已知平面直角坐标系xOy(如图),一次函数y=
3
4
x+3
的图象与y轴交于点A,点M在正比例函数y=
3
2
x
的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.
(1)求线段AM的长;
(2)求这个二次函数的解析式;
(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数y=
3
4
x+3
的图象上,且四边形ABCD是菱形,求点C的坐标.
分析:(1)先求出根据OA垂直平分线上的解析式,再根据两点的距离公式求出线段AM的长;
(2)二次函数y=x2+bx+c的图象经过点A、M.待定系数法即可求出二次函数的解析式;
(3)可设D(n,
3
4
n+3),根据菱形的性质得出C(n,n2_
5
2
n+3)且点C在二次函数y=x2_
5
2
x+3上,得到方程求解即可.
解答:精英家教网解:(1)在一次函数y=
3
4
x+3中,
当x=0时,y=3.
∴A(0,3).
∵MO=MA,
∴M为OA垂直平分线上的点,
可求OA垂直平分线上的解析式为y=
3
2
x,
又∵点M在正比例函数y=
3
2
x

∴M(1,
3
2
),
又∵A(0,3).
∴AM=
13
2


(2)∵二次函数y=x2+bx+c的图象经过点A、M.可得
1+b+c=
3
2
0+0+c=3

解得
b=-
5
2
c=3

∴y=x2-
5
2
x+3;

(3)∵点D在一次函数y=
3
4
x+3
的图象上,
则可设D(n,
3
4
n+3),
设B(0,m),(m<3),C(n,n2-
5
2
n+3)
∵四边形ABDC是菱形,
∴|AB|=3-m,|DC|=|yD-yC|=|
3
4
n+3-(n2_
5
2
n+3)|=|
13
4
n-n2|,
|AD|=
(n-0) 2+(
3
4
n+3-3) 2
=|
5
4
n|,
∵|AB|=|DC|,
∴3-m=
13
4
n-n2,①,
∵|AB|=|DA|,
∴3-m=
5
4
n,②
解①②得,n1=0(舍去),n2=2,
将n=2,代入C(n,n2_
5
2
n+3),
∴C(2,2).
点评:本题是二次函数的综合题型,其中涉及的知识点有抛物线解析式的确定,两点的距离公式,菱形的性质,解二元一次方程,综合性较强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网