题目内容
一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起.则其颜色搭配一致的概率是( )
(A) (B) (C) (D)1
如图,已知抛物线的顶点C在x轴正半轴上,一次函数与抛物线交于A、B两点,与x、y轴交于D、E两点.
(1)求m的值.
(2)求A、B两点的坐标.
(3)点P(a,b)()是抛物线上一点,当△PAB的面积是△ABC面积的2倍时,求a,b的值.
如果关于的一元二次方程没有实数根,那么的取值范围是________.
定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),
当x1﹤x2时,都有y1﹤y2,称该函数为增函数.根据以上定义,可以判断下面所给的函数中,是增函数的有______________(填上所有正确答案的序号).
① y = 2x; ② y =x+1; ③ y = x2 (x>0); ④ .
如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
如图,直线a∥b,∠1 = 60°,∠2 = 40°,则∠3等于( )
(A)40° (B)60° (C)80° (D)100°.
(本题满分7分)某学校初三年级男生共200人,随机抽取10名测量他们的身高为(单位:cm):
181、176、169、155、163、175、173、167、165、166.
(1)求这10名男生的平均身高和上面这组数据的中位数;
(2)估计该校初三年级男生身高高于170cm的人数;
(3)从身高为181、176、175、173的男生中任选2名,求身高为181cm的男生被抽中的概率.
如图,是一副学生用的三角板,在△ABC 中,∠C=90°, ∠A=60°,∠B=30°;在△中,∠C=90°, ∠A=45°,∠B=45°,且AB= CB .若将边与边CA重合,其中点 与点C重合.将三角板绕点C()按逆时针方向旋转,旋转过的角为,旋转过程中边与边AB的交点为M, 设AC=.
(1)计算的长;
(2)当=30°时,证明:∥AB;
(3)若=,当=45°时,计算两个三角板重叠部分图形的面积;
(4)当=60°时,用含的代数式表示两个三角板重叠部分图形的面积.
(参考数据:°= ,°= ,°=
°= , °= , °=)
如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A.主视图改变,左视图改变 B.俯视图不变,左视图不变
C.俯视图改变,左视图改变 D.主视图改变,左视图不变