题目内容
如图,已知,试说明。
如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧的墙上时,梯子的顶端在B点,当它靠在另一侧的墙上时,梯子的顶端在D点,已知,,点B到地的垂直距离米,求两堵墙之间的距离CE.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.
关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )
A. ①③ B. ②③ C. ①④ D. ②④
计算|﹣6|﹣(﹣)0的值是( )
A. 5 B. ﹣5 C. 5 D. 7
把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为、C分别在M、N的位置上,若,则 ______ 。
有下列四个命题:相等的角是对顶角;两条直线被第三条直线所截,同位角相等;若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;从直线外一点到这条直线的垂线段,叫做点到直线的距离其中是真命题的个数有
A. 0个 B. 1个 C. 2个 D. 3个
如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0)(8,2),(6,4)。已知△A1B1C1的两个顶点的坐标为(1,3),(2,5)。若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为 .
江津区某玩具商城在“六一”儿童节来临之际,以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具,且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具。
(1)若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围;
(2)在实际销售中,玩具城以(1)中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了%,从而每天的销售量降低了%,当每天的销售利润为147元时,求a的值.