题目内容
如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A. 15° B. 20° C. 25° D. 30°
如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是( )
A. m>1 B. m<2 C. m>3 D. m>5
现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为__________.
我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足i2=-1(即方程x2=-1有一个根为i),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2·i=(-1)(-1)·i=-i,i4=(i2)2=(-1)2=1,从而对任意正整数n,则i6=( )
A. -1 B. 1 C. i D. -i
如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d(∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.
(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= ,d(∠xOy,B)= .
(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.
(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).
①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;
②在图4中,抛物线y=-x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.
化简:÷(a+1)+.
下列运算结果为a6的是( )
A. a2+a3 B. a2•a3 C. (﹣a2)3 D. a8÷a2
已知:26=a2=4b,则a+b= ______ .