题目内容
(2014•葫芦岛二模)在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A.
B.
C.
D.![]()
D
【解析】
试题分析:关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=
,与y轴的交点坐标为(0,c).
【解析】
A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=
=
>0,则对称轴应在y轴右侧,与图象不符,故A选项错误;
B.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,开口方向朝下,与图象不符,故B选项错误;
C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=
=
<0,则对称轴应在y轴左侧,与图象不符,故C选项错误;
D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=
=
>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.
故选:D.
练习册系列答案
相关题目