题目内容
(1)计算:x(4x﹣1)﹣(2x﹣3)(2x+3)+(x﹣1)2;
(2)已知实数a,b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.
如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒.
(1)当点B与点D重合时,求t的值;
(2)设△BCD的面积为S,当t为何值时,S=?
(3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.
正方形具有而菱形不具有的性质是( )
A. 对角线互相平分 B. 对角线互相垂直 C. 对角线相等 D. 对角线平分一组对角
如图,在中,,,,将沿射线的方向平移个单位后,得到,连接,则的周长为________.
某市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )
A. 至少20户 B. 至多20户 C. 至少21户 D. 至多21户
计算: (1) ; (2)(0.4 x3 ym)2÷(2 x2yn)2。
3an+1÷2 an=_________.
已知反比例函数的图象经过点(-1,-2).
(1)求y与x的函数关系式;
(2)若点(2,n)在这个图象上,求n的值.
问题提出
(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示).
问题探究
(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.
问题解决:
(3)①如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.
②如图4,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若对角线BD⊥CD于点D,请直接写出对角线AC的最大值.