题目内容

三角形三条中位线的长为3、4、5,则此三角形的面积为


  1. A.
    12
  2. B.
    24
  3. C.
    36
  4. D.
    48
B
分析:根据中位线定理可以求出原三角形的边长分别为6、8、10,再利用勾股定理的逆定理判断其形状,易证原三角形是直角三角形,再求面积.
解答:∵三角形三条中位线的长为3、4、5,
根据中位线定理,三角形三条边长为
2×3=6,2×4=8,2×5=10,
根据勾股定理的逆定理,62+82=102
所以此三角形为直角三角形.
此三角形的面积为:×6×8=24.
故选B.
点评:此题已知三角形三条中位线的长求其面积,应根据中位线定理先求出三边长,确定三角形的形状再计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网