题目内容
如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为 .
在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,则D到BC的距离是( )
A. 3 B. 4 C. 5 D. 6
如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;
(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是 .
下列四组线段中,可以构成直角三角形的是( )
A. 3,5,6 B. 2,3,4 C. 1, ,2 D. 3,4,
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;
(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度是 .
2013年2月28日,全国科学技术名词审定委员会称PM2.5拟正式命名为“细颗粒物”,网友戏称“霾尘”.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物.请将0.0000025用科学记数法表示为 .
一次函数y=kx+b,当k<0,b<0时,它的图象大致为
A. B. C. D.
用边长为8cm的正方形,做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积
为__________cm2.
(14分)如图,已知抛物线()与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.