题目内容
请先阅读下列一组内容,然后解答问题:
先观察下列等式:
=1-
,
=
-
,
=
-
…
=
-
将以上等式两边分别相加得:
+
+
+…+
=+(
-
)+(
-
)+…+(
-
)=
-
+
-
+…+
-
=1-
=
然后用你发现的规律解答下列问题:
(1)猜想并写出:
=______;
(2)直接写出下列各式的计算结果:
①
+
+
+…+
=______;
②
+
+
+…+
=______;
(3)探究并计算:
+
+
+…+
.
先观察下列等式:
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9×10 |
| 1 |
| 9 |
| 1 |
| 10 |
将以上等式两边分别相加得:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 9×10 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 10 |
| 9 |
| 10 |
然后用你发现的规律解答下列问题:
(1)猜想并写出:
| 1 |
| n(n-1) |
(2)直接写出下列各式的计算结果:
①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2010×2011 |
②
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
(3)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2012×2014 |
(1)根据题意得:
=
-
;
(2)①原式=1-
+
-
+…+
-
=1-
=
;
②原式═1-
+
-
+…+
-
=1-
=
;
(3)原式=
×(
-
+
-
+…+
-
)=
×(
-
)=
.
故答案为:(1)
=
-
;(2)①
;②
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
(2)①原式=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
②原式═1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
(3)原式=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2012 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2014 |
| 503 |
| 2014 |
故答案为:(1)
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
| 2010 |
| 2011 |
| n |
| n+1 |
练习册系列答案
相关题目