题目内容
【题目】探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.
嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.
淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.
迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:
![]()
(1)如图2.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;
(2)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.
运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.
【答案】(1)不成立,CF=PD-PE,理由见解析;(2)CF=PE-PD理由见解析;运用:PG+PH的值为12.
【解析】
(1)由三角形的面积和差关系可求解;
(2)由三角形的面积和差关系可求解;
(3)易证BE=BF,过点E作EQ⊥BF,垂足为Q,利用探究中的结论可得PG+PH=EQ,易证EQ=AB,BF=BE=DE=13,只需求出AB即可.
解:(1)不成立,CF=PD-PE
理由如下:
连接AP,如图,
![]()
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP-S△ACP,
∴
ABCF=
ABPD-
ACPE.
∵AB=AC,
∴CF=PD-PE.
(2)CF=PE-PD
理由如下:
如图,
![]()
∵S△ABC=S△ACP-S△ABP,
∴
ABCF=
ACPE-
ABPD
∵AB=AC
∴CF=PE-PD
运用:过点E作EQ⊥BC,垂足为Q,如图,
![]()
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,∠A=∠ABC=90°.
∵AD=18,CF=5,
∴BF=BC-CF=AD-CF=13.
由折叠可得:DE=BB,∠BEF=∠DEF.
∵AD∥BC
∴∠DEF=∠EFB
∴∠BEF=∠BFE
∴BE=BF=13=DE
∴AE=5
∵∠A=90°,
∴AB=
=12
∵EQ⊥BC,∠A=∠ABC=90°.
∴∠EQC=90°=∠A=∠ABC
∴四边形EQBA是矩形.
∴EQ=AB=12.
由探究的结论可得:PG+PH=EQ.
∴PG+PH=12.
∴PG+PH的值为12.
故答案为:(1)不成立,CF=PD-PE,理由见解析;(2)CF=PE-PD理由见解析;运用:PG+PH的值为12.
【题目】为缓解油价上涨给出租车行业带来的成本压力,某市拟调整出租车运价,调整方案见下列表格及图象(其中
为常数)
行驶路程 | 收费标准 | |
调价前 | 调价后 | |
不超过 | 起步价7元 | 起步价 |
超过 | 每公里2元 | 每公里 |
超出 | 每公里 | |
设行驶路程为
,调价前的运价
(元),调价后运价
(元),如图,折线
表示
与
之间的函数关系式,线段
表示当
时,
与
的函数关系式,根据图表信息,完成下列各题:
![]()
①填空:
,
,
;
②当
时,求
与
的关系,补充图中该函数的图像;
③函数
与
的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义;若不存在,请说明理由.