ÌâÄ¿ÄÚÈÝ
15£®¶ÔÓÚÒ»¸öÔ²ºÍÒ»¸öÕý·½Ðθø³öÈç϶¨Ò壺ÈôÔ²ÉÏ´æÔÚµ½´ËÕý·½ÐÎËÄÌõ±ß¾àÀë¶¼ÏàµÈµÄµã£¬Ôò³ÆÕâ¸öÔ²ÊǸÃÕý·½Ðεġ°µÈ¾àÔ²¡±£®Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Õý·½ÐÎABCDµÄ¶¥µãAµÄ×ø±êΪ£¨2£¬4£©£¬¶¥µãC¡¢DÔÚxÖáÉÏ£¬ÇÒµãCÔÚµãDµÄ×ó²à£®
£¨1£©µ±r=2$\sqrt{2}$ʱ£¬ÔÚP1£¨0£¬2£©£¬P2£¨-2£¬4£©£¬P3£¨4$\sqrt{2}$£¬2£©ÖпÉÒÔ³ÉΪÕý·½ÐÎABCDµÄ¡°µÈ¾àÔ²¡±µÄÔ²ÐĵÄÊÇP2£¨-2£¬4£©£»
£¨2£©µ±Pµã×ø±êΪ£¨-3£¬6£©£¬Ôòµ±¡ÑPµÄ°ë¾¶rÊǶàÉÙʱ£¬¡ÑPÊÇÕý·½ÐÎABCDµÄ¡°µÈ¾àÔ²¡±£¬ÊÔÅжϴËʱ¡ÑPÓëÖ±ÏßACµÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬ÔÚÕý·½ÐÎABCDËùÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Õý·½ÐÎEFGHµÄ¶¥µãFµÄ×ø±êΪ£¨6£¬2£©£¬¶¥µãE¡¢HÔÚyÖáÉÏ£¬ÇÒµãHÔÚµãEµÄÉÏ·½£®
¢Ù½«Õý·½ÐÎABCDÈÆ×ŵãDÐýתһÖÜ£¬ÔÚÐýתµÄ¹ý³ÌÖУ¬Ïß¶ÎHFÉÏûÓÐÒ»¸öµãÄܳÉΪËüµÄ¡°µÈ¾àÔ²¡±µÄÔ²ÐÄ£¬Ö±½Óд³örµÄȡֵ·¶Î§ÊÇ0£¼r£¼$\sqrt{2}$»òr£¾2$\sqrt{17}+2\sqrt{2}$£®
¢ÚÈô¡ÑPͬʱΪÉÏÊöÁ½¸öÕý·½Ðεġ°µÈ¾àÔ²¡±£¬ÇÒÓëBCËùÔÚÖ±ÏßÏàÇУ¬Çó¡ÑPµÄÔ²ÐÄPµÄ×ø±ê£®
·ÖÎö £¨1£©¸ù¾Ý¡°µÈ¾àÔ²¡±µÄ¶¨Ò壬¿ÉÖªÖ»ÒªÔ²¾¹ýÕý·½ÐεÄÖÐÐÄ£¬¼´ÊÇÕý·½Ðεġ°µÈ¾àÔ²¡±£¬Ò²¾ÍÊÇ˵ԲÐÄÓëÕý·½ÐÎÖÐÐĵľàÀëµÈÓÚÔ²µÄ°ë¾¶¼´¿É£¬´Ó¶ø¿ÉÒÔÅжÏÄĸöµã¿ÉÒÔ³ÉΪÕý·½ÐÎABCDµÄ¡°µÈ¾àÔ²¡±µÄÔ²ÐÄ£¬±¾ÌâµÃÒÔ½â¾ö£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉÖª£¬Ö»ÒªÇó³öµãPÓëÕý·½ÐÎABCDµÄÖÐÐĵľàÀë¼´¿ÉÇóµÃ°ë¾¶rµÄ³¤¶È£¬Á¬½ÓPE£¬¿ÉÒԵõ½Ö±ÏßPEµÄ½âÎöʽ£¬¿´µãBÊÇ·ñÔÚ´ËÖ±ÏßÉÏ£¬ÓÉBEÓëÖ±ÏßACµÄ¹ØÐÄ¿ÉÒÔÅжÏPEÓëÖ±ÏßACµÄ¹ØÏµ£¬±¾ÌâµÃÒÔ½â¾ö£»
£¨3£©¢Ù¸ù¾ÝÌâÒ⣬¿ÉÒÔ×ö³öºÏÊʵĸ¨ÖúÏߣ¬»³öÏàÓ¦µÄͼÐΣ¬È»ºóÁé»îת»¯£¬¿ÉÒÔÇóµÃÏàÓ¦µÄrµÄȡֵ·¶Î§£¬±¾ÌâµÃÒÔ½â¾ö£»
¢Ú¸ù¾ÝÌâÒ⣬¿ÉÒԵõ½µãPÂú×ãµÄÌõ¼þ£¬ÁгöÐÎÓ¦µÄ¶þÔªÒ»´Î·½³Ì×飬´Ó¶ø¿ÉÒÔÇóµÃµãPµÄ×ø±ê£®
½â´ð
½â£º£¨1£©Á¬½ÓAC¡¢BDÏཻÓÚµãM£¬ÈçÓÒͼ1Ëùʾ£¬
¡ßËıßÐÎABCDÊÇÕý·½ÐΣ¬
¡àµãMÊÇÕý·½ÐÎABCDµÄÖÐÐÄ£¬µ½ËıߵľàÀëÏàµÈ£¬
¡à¡ÑPÒ»¶¨¹ýµãM£¬
¡ßÕý·½ÐÎABCDµÄ¶¥µãAµÄ×ø±êΪ£¨2£¬4£©£¬¶¥µãC¡¢DÔÚxÖáÉÏ£¬ÇÒµãCÔÚµãDµÄ×ó²à£®
¡àµãM£¨0£¬2£©£¬
Éè¡ÑPµÄÔ²ÐÄ×ø±êÊÇ£¨x£¬y£©£¬
¡à$£¨x-0£©^{2}+£¨y-2£©^{2}=£¨2\sqrt{2}£©^{2}$£¬
½«P1£¨0£¬2£©£¬P2£¨-2£¬4£©£¬P3£¨4$\sqrt{2}$£¬2£©·Ö±ð´úÈëÉÏÃæµÄ·½³Ì£¬Ö»ÓÐP2£¨-2£¬4£©³ÉÁ¢£¬
¹Ê´ð°¸Îª£ºP2£¨-2£¬4£©£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ£¬
µãMµÄ×ø±êΪ£¨0£¬2£©£¬µãP£¨-3£¬6£©£¬
¡àr=$\sqrt{£¨-3-0£©^{2}+£¨6-2£©^{2}}=5$£¬
¼´µ±Pµã×ø±êΪ£¨-3£¬6£©£¬Ôòµ±¡ÑPµÄ°ë¾¶rÊÇ5ʱ£¬¡ÑPÊÇÕý·½ÐÎABCDµÄ¡°µÈ¾àÔ²¡±£»
´Ëʱ¡ÑPÓëÖ±ÏßACµÄλÖùØÏµÊÇÏཻ£¬
ÀíÓÉ£º¡ßÕý·½ÐÎABCDµÄ¶¥µãAµÄ×ø±êΪ£¨2£¬4£©£¬¶¥µãC¡¢DÔÚxÖáÉÏ£¬ÇÒµãCÔÚµãDµÄ×ó²à£¬
¡àµãC£¨-2£¬0£©£¬
Éè¹ýµãA£¨2£¬4£©£¬µãC£¨-2£¬0£©µÄÖ±ÏߵĽâÎöʽΪy=kx+b£¬
Ôò$\left\{\begin{array}{l}{2k+b=4}\\{-2k+b=0}\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$£¬
¼´Ö±ÏßACµÄ½âÎöʽΪ£ºy=x+2£¬
¡àµãP£¨-3£¬6£©µ½Ö±ÏßACµÄ¾àÀëΪ£º$\frac{|-3-6+2|}{\sqrt{{1}^{2}+£¨-1£©^{2}}}$=$\frac{7\sqrt{2}}{2}$£¬
¡ß$\frac{7\sqrt{2}}{2}$£¼5£¬
¡à´Ëʱ¡ÑPÓëÖ±ÏßACµÄλÖùØÏµÊÇÏཻ£»
£¨3£©Á¬½ÓDH£¬×÷DT¡ÍHFÓÚµãT£¬ÒÔµãDΪԲÐÄ£¬DE³¤Îª°ë¾¶×÷Ô²£¬½»DTÓÚµãE2£¬½»HDµÄÑÓ³¤ÏßÓÚµãE1£¬ÈçÓÒͼ2Ëùʾ£¬![]()
¢ÙÉè¹ýµãH£¨0£¬8£©£¬F£¨2£¬6£©µÄÖ±ÏߵĽâÎöʽΪy=kx+b£¬
Ôò$\left\{\begin{array}{l}{b=8}\\{2k+b=6}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{k=-1}\\{b=8}\end{array}\right.$£¬
¼´Ö±ÏßHFµÄ½âÎöʽΪ£ºy=-x+8£¬
¡ßHF¡ÍDT£¬D£¨2£¬0£©£¬
¡àÉèÖ±ÏßDTËùÔÚÖ±ÏߵĽâÎöΪ£ºy=x+c£¬
Ôò0=2+cµÃc=-2£¬
¼´Ö±ÏßDTËùÔÚµÄÖ±Ïß½âÎöΪ£ºy=x-2£¬
¡ßµãTÊÇÖ±ÏßHTÓëÖ±ÏßDTµÄ½»µã£¬
¡à$\left\{\begin{array}{l}{y=-x+8}\\{y=x+2}\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$£¬
¼´µãTµÄ×ø±êΪ£¨3£¬5£©£¬
¡àDT=$\sqrt{£¨5-2£©^{2}+£¨3-0£©^{2}}=3\sqrt{2}$£¬
ÓÖ¡ßDE2=DE=$\sqrt{£¨2-0£©^{2}+£¨0-2£©^{2}}=2\sqrt{2}$£¬
¡àE2T=DT-DE2=$3\sqrt{2}-2\sqrt{2}$=$\sqrt{2}$£¬
¡àµ±0£¼r£¼$\sqrt{2}$ʱ£¬Ïß¶ÎHFÉÏûÓÐÒ»¸öµãÄܳÉΪËüµÄ¡°µÈ¾àÔ²¡±µÄÔ²ÐÄ£»
¡ßD£¨0£¬2£©£¬H£¨0£¬8£©£¬
¡àDH=$\sqrt{£¨2-0£©^{2}+£¨0-8£©^{2}}=2\sqrt{17}$£¬
ÓÖ¡ßDE1=DE=$\sqrt{£¨2-0£©^{2}+£¨0-2£©^{2}}=2\sqrt{2}$£¬
¡àHE1=2$\sqrt{17}$+2$\sqrt{2}$£¬
¡àµ±r£¾2$\sqrt{17}$+2$\sqrt{2}$ʱ£¬Ïß¶ÎHFÉÏûÓÐÒ»¸öµãÄܳÉΪËüµÄ¡°µÈ¾àÔ²¡±µÄÔ²ÐÄ£»
¹Ê´ð°¸Îª£º0£¼r£¼$\sqrt{2}$»òr£¾2$\sqrt{17}$+2$\sqrt{2}$£»
¢ÚÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬Á¬½ÓHF¡¢EG½»ÓÚµãN£¬ÔòµãNΪÕý·½ÐÎEFGHµÄÖÐÐÄ£¬ÈçÓÒÉÏͼ2Ëùʾ£¬
¡ßµãE£¨0£¬2£©£¬N£¨3£¬5£©£¬µãC£¨-2£¬0£©£¬µãB£¨-2£¬4£©£¬¡ÑPͬʱΪÉÏÊöÁ½¸öÕý·½Ðεġ°µÈ¾àÔ²¡±£¬ÇÒÓëBCËùÔÚÖ±ÏßÏàÇУ¬
¡à$\left\{\begin{array}{l}{\sqrt{£¨x-0£©^{2}+£¨2-y£©^{2}}=\sqrt{£¨3-x£©^{2}+£¨5-y£©^{2}}}\\{\sqrt{£¨x-0£©^{2}+£¨2-y£©^{2}}=x-£¨-2£©}\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}{x=5+2\sqrt{5}}\\{y=-2\sqrt{5}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=5-2\sqrt{5}}\\{y=2\sqrt{5}}\end{array}\right.$£¬
¼´¡ÑPµÄÔ²ÐÄPµÄ×ø±êÊÇ£¨5+2$\sqrt{5}$£¬-2$\sqrt{5}$£©»ò£¨5-2$\sqrt{5}$£¬2$\sqrt{5}$£©£®
µãÆÀ ±¾Ì⿼²éÔ²µÄ×ÛºÏÌ⣬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬¸ù¾ÝÌâÄ¿¸ø³öµÄÌõ¼þ£¬×÷³öºÏÊʵĸ¨ÖúÏߣ¬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÀûÓÃÊýÐνáºÏµÄ˼Ïë½â´ðÎÊÌ⣮
| A£® | £¨x+1£©£¨-1-x£© | B£® | £¨$\frac{1}{2}$a+b£©£¨b-$\frac{1}{2}$a£© | C£® | £¨-a+b£©£¨a-b£© | D£® | £¨x2-y£©£¨x+y2£© |
| A£® | 0»ò1 | B£® | 1»ò-1 | C£® | 0»ò¡À1 | D£® | 0 |
| A£® | 30¡ã | B£® | 50¡ã | C£® | 75¡ã | D£® | 100¡ã |