题目内容

如图,四边形ABCD的对角线AC,BD交于点F,点E是BD上一点,且∠BAC=∠BDC=∠DAE.

(1)求证:△ABE∽△ACD;

(2)若BC=2,AD=6,DE=3,求AC的长.

(1)见解析 (2)AC=4

【解析】

试题分析:(1)根据∠BAC=∠DAE得到∠BAE=∠CAD,根据∠BAC=∠BDC,∠BFA=∠CFD得到∠ABE=∠ACD,从而说明△ABE和△ACD相似;(2)根据△ABE∽△ACD得到,再根据∠BAC=∠DAE得到△ABC和△AED相似,根据相似比求出AC的值.

试题解析:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.

又∵∠BAC=∠BDC,∠BFA=∠CFD, ∴180°-∠BAC-∠BFA=180°-∠BDC-∠CFD,即∠ABE=∠ACD.

∴△ABE∽△ACD.

(2)∵△ABE∽△ACD,∴. 又∵∠BAC=∠DAE, ∴△ABC∽△AED,

, ∴AC==4.

考点:三角形相似的判定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网