题目内容


如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.

(1)求证:△ADE≌△CBF;

(2)求证:四边形BFDE为矩形.


       证明:(1)∵DE⊥AB,BF⊥CD,

∴∠AED=∠CFB=90°,

∵四边形ABCD为平行四边形,

∴AD=BC,∠A=∠C,

在△ADE和△CBF中,

∴△ADE≌△CBF(AAS);

(2)∵四边形ABCD为平行四边形,

∴CD∥AB,

∴∠CDE+∠DEB=180°,

∵∠DEB=90°,

∴∠CDE=90°,

∴∠CDE=∠DEB=∠BFD=90°,

则四边形BFDE为矩形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网