题目内容
如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.
(1)求证:△ADE≌△CBF;
(2)求证:四边形BFDE为矩形.
![]()
证明:(1)∵DE⊥AB,BF⊥CD,
∴∠AED=∠CFB=90°,
∵四边形ABCD为平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS);
(2)∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠CDE+∠DEB=180°,
∵∠DEB=90°,
∴∠CDE=90°,
∴∠CDE=∠DEB=∠BFD=90°,
则四边形BFDE为矩形.
练习册系列答案
相关题目