ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÖ±Ïßy=﹣x+3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚA£¬BÁ½µã£¬Å×ÎïÏßy=﹣x2+bx+c¾¹ýA£¬BÁ½µã£¬µãPÔÚÏß¶ÎOAÉÏ£¬´ÓµãO³ö·¢£¬ÏòµãAÒÔ1¸öµ¥Î»/ÃëµÄËÙ¶ÈÔÈËÙÔ˶¯£»Í¬Ê±£¬µãQÔÚÏß¶ÎABÉÏ£¬´ÓµãA³ö·¢£¬ÏòµãBÒÔ
¸öµ¥Î»/ÃëµÄËÙ¶ÈÔÈËÙÔ˶¯£¬Á¬½ÓPQ£¬ÉèÔ˶¯Ê±¼äΪtÃ룮
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÎÊ£ºµ±tΪºÎֵʱ£¬¡÷APQΪֱ½ÇÈý½ÇÐΣ»
£¨3£©¹ýµãP×÷PE¡ÎyÖᣬ½»ABÓÚµãE£¬¹ýµãQ×÷QF¡ÎyÖᣬ½»Å×ÎïÏßÓÚµãF£¬Á¬½ÓEF£¬µ±EF¡ÎPQʱ£¬ÇóµãFµÄ×ø±ê£»
£¨4£©ÉèÅ×ÎïÏß¶¥µãΪM£¬Á¬½ÓBP£¬BM£¬MQ£¬ÎÊ£ºÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹ÒÔB£¬Q£¬MΪ¶¥µãµÄÈý½ÇÐÎÓëÒÔO£¬B£¬PΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
![]()
½â£º£¨1£©¡ßy=﹣x+3ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬
¡àµ±y=0ʱ£¬x=3£¬¼´Aµã×ø±êΪ£¨3£¬0£©£¬
µ±x=0ʱ£¬y=3£¬¼´Bµã×ø±êΪ£¨0£¬3£©£¬
½«A£¨3£¬0£©£¬B£¨0£¬3£©´úÈëy=﹣x2+bx+c£¬
µÃ
£¬½âµÃ![]()
¡àÅ×ÎïÏߵĽâÎöʽΪy=﹣x2+2x+3£»
£¨2£©¡ßOA=OB=3£¬¡ÏBOA=90¡ã£¬
¡à¡ÏQAP=45¡ã£®
![]()
Èçͼ¢ÙËùʾ£º¡ÏPQA=90¡ãʱ£¬ÉèÔ˶¯Ê±¼äΪtÃ룬ÔòQA=
£¬PA=3﹣t£®
ÔÚRt¡÷PQAÖУ¬
£¬¼´£º
£¬½âµÃ£ºt=1£»
Èçͼ¢ÚËùʾ£º¡ÏQPA=90¡ãʱ£¬ÉèÔ˶¯Ê±¼äΪtÃ룬ÔòQA=
£¬PA=3﹣t£®
ÔÚRt¡÷PQAÖУ¬
£¬¼´£º
£¬½âµÃ£ºt=
£®
×ÛÉÏËùÊö£¬µ±t=1»òt=
ʱ£¬¡÷PQAÊÇÖ±½ÇÈý½ÇÐΣ»
£¨3£©Èçͼ¢ÛËùʾ£º
![]()
ÉèµãPµÄ×ø±êΪ£¨t£¬0£©£¬ÔòµãEµÄ×ø±êΪ£¨t£¬﹣t+3£©£¬ÔòEP=3﹣t£¬µãQµÄ×ø±êΪ£¨3﹣t£¬t£©£¬µãFµÄ×ø±êΪ£¨3﹣t£¬﹣£¨3﹣t£©2+2£¨3﹣t£©+3£©£¬ÔòFQ=3t﹣t2£®
¡ßEP¡ÎFQ£¬EF¡ÎPQ£¬
¡àEP=FQ£®¼´£º3﹣t=3t﹣t2£®
½âµÃ£ºt1=1£¬t2=3£¨ÉáÈ¥£©£®
½«t=1´úÈëF£¨3﹣t£¬﹣£¨3﹣t£©2+2£¨3﹣t£©+3£©£¬µÃµãFµÄ×ø±êΪ£¨2£¬3£©£®
£¨4£©Èçͼ¢ÜËùʾ£º
![]()
ÉèÔ˶¯Ê±¼äΪtÃ룬ÔòOP=t£¬BQ=£¨3﹣t£©
£®
¡ßy=﹣x2+2x+3=﹣£¨x﹣1£©2+4£¬
¡àµãMµÄ×ø±êΪ£¨1£¬4£©£®
¡àMB=
=
£®
µ±¡÷BOP¡×¡÷QBMʱ£¬
¼´£º
£¬ÕûÀíµÃ£ºt2﹣3t+3=0£¬
¡÷=32﹣4¡Á1¡Á3£¼0£¬Î޽⣺
µ±¡÷BOP¡×¡÷MBQʱ£¬
¼´£º
£¬½âµÃt=
£®
¡àµ±t=
ʱ£¬ÒÔB£¬Q£¬MΪ¶¥µãµÄÈý½ÇÐÎÓëÒÔO£¬B£¬PΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£®