ÌâÄ¿ÄÚÈÝ
2£®´Ó-2£¬-1£¬0£¬1£¬2Õâ5¸öÊýÖÐËæ»ú³éȡһ¸öÊý¼ÇΪa£¬Ôòʹ¹ØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}{-1-x¡Ü2a}\\{2x-4¡Ü2a}\end{array}\right.$Óн⣬ÇÒʹ¹ØÓÚxµÄÒ»´Îº¯Êýy=$\frac{1}{4}$x-aµÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{3a+2}{x}$µÄͼÏóÓÐ1¸ö½»µãµÄ¸ÅÂÊÊÇ$\frac{1}{5}$£®·ÖÎö Ïȸù¾Ý²»µÈʽ×éÓнâÇó³öaµÄȡֵ·¶Î§£¬ÔÙÓÉÁ½º¯ÊýͼÏóÓÐÒ»¸ö½»µãµÃ³öaµÄÖµ£¬¸ù¾Ý¸ÅÂʹ«Ê½¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º½â²»µÈʽ×é$\left\{\begin{array}{l}-1-x¡Ü2a\\ 2x-4¡Ü2a\end{array}\right.$µÃ£¬-2a-1¡Üx¡Üa+2£¬
¡ß²»µÈʽ×éÓн⣬
¡à-2a-1¡Üa+2£¬½âµÃa¡Ý-1£¬
¡àaµÄÖµ¿ÉÒÔΪ£º-1£¬0£¬1£¬2£»
¡ßÒ»´Îº¯Êýy=$\frac{1}{4}$x-aµÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{3a+2}{x}$µÄͼÏóÓÐ1¸ö½»µã£¬
¡à$\frac{1}{4}$x-a=$\frac{3a+2}{x}$£¬ÕûÀíµÃ£¬$\frac{1}{4}$x2-ax-£¨3a+2£©=0£¬
¡à¡÷=£¨-a£©2+£¨3a+2£©=0£¬½âµÃa=-1»òa=-2£¬
¡àa=-1£¬
¡àʹ¹ØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}{-1-x¡Ü2a}\\{2x-4¡Ü2a}\end{array}\right.$Óн⣬ÇÒʹ¹ØÓÚxµÄÒ»´Îº¯Êýy=$\frac{1}{4}$x-aµÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{3a+2}{x}$µÄͼÏóÓÐ1¸ö½»µãµÄ¸ÅÂÊ=$\frac{1}{5}$£®
¹Ê´ð°¸Îª£º$\frac{1}{5}$£®
µãÆÀ ±¾Ì⿼²éµÄÊǸÅÂʹ«Ê½£¬¸ù¾ÝÌâÒâµÃ³öaµÄÖµÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
| A£® | 5a-4a=1 | B£® | a+2a2=3a3 | C£® | -£¨a-b£©=-a+b | D£® | 2£¨a-b£©=2a-b |