题目内容

9.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A的度数.

分析 首先设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;然后根据△ABC三边长都是整数且互不相等,判断出△ABC三边长分别是5、3、4;最后根据勾股定理,判断出△ABC是直角三角形,即可求出∠A的度数是多少.

解答 解:根据题意,设BC、AC、AB边的长度分别是a、b、c,
则a+b+c=12;
∵BC为最大边,
∴a最大,
又∵b+c>a,
∴a<6,
∵△ABC三边长都是整数,
∴a=5,
又∵△ABC三边长互不相等,
∴其他两边分别为3,4,
∵32+42=52
∴△ABC是直角三角形,
∴∠A=90°,
即∠A的度数是90°.

点评 此题主要考查了三角形三边的关系,以及勾股定理的应用,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网