题目内容

如图,在△ABC中,AB = AC = 2,∠B =∠C = 50°,点D在线段BC上运动(点D不与B、C重合),连结AD,作∠ADE = 50°,DE交线段AC于点E.

(1)若DC = 2,求证:△ABD≌△DCE;

(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.

(1)证明见解析;(2)可以,见解析. 【解析】试题分析:(1)利用公共角求得∠ADB=∠DEC, DC=AB, ∠B =∠C,所以利用AAS,证明△ABD≌△DCE. (2)可以令△ADE是等腰三角形,需要分类讨论:(1)中是一种类型,EA=ED也是一种类型,可分别求出∠BDA度数. (2) 试题解析: (1)证明:∵ AB = AC = 2,DC = 2, ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网