题目内容
一个均匀的立方体骰子的六个面上标有数1,2,3,4,5,6,随机地掷两次骰子,那么第二次得到的数字大于第一次得到的数字的概率是多少?分析:列举出所有情况,看所求的情况占总情况的多少即可.
解答:解:根据题意,列出如下的表格(2分)
从表格可以看出,所有可能出现的结果共有36个.
第二次得到的数字大于第一次得到的数字(记为事件A)的结果有15个,即(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),那么P(A)=
=
.
| 后 先 |
1 | 2 | 3 | 4 | 5 | 6 |
| 1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
| 2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
| 3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
| 4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
| 5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
| 6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
第二次得到的数字大于第一次得到的数字(记为事件A)的结果有15个,即(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),那么P(A)=
| 15 |
| 36 |
| 5 |
| 12 |
点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
,注意本题是放回实验.
| m |
| n |
练习册系列答案
相关题目