题目内容
4.| A. | 有最小值-5、最大值0 | B. | 有最小值-3、最大值6 | ||
| C. | 有最小值0、最大值6 | D. | 有最小值2、最大值6 |
分析 根据二次函数的性质可判断二次函数有最小值0,则可判断C选项正确.
解答 解:因为抛物线的顶点在x轴上,抛物线开口向上,
所以二次函数有最小值0.
故选C.
点评 本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-$\frac{b}{2a}$,y=$\frac{4ac-{b}^{2}}{4a}$;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-$\frac{b}{2a}$,y=$\frac{4ac-{b}^{2}}{4a}$.
练习册系列答案
相关题目
14.
若反比例函数y1=$\frac{k}{x}$的图象和一次函数y2=ax+b的图象如图所示,则当y1<y2时,相应的x的取值范围是( )
| A. | -5<x<-1或x>0 | B. | x<-5或x>-1 | C. | -5<x<-1 | D. | x<-5或-1<x<0 |