题目内容
化简:
(1)(x+3y)2-2(x+3y)(x-3y)+(x-3y)2
(2).
已知(-3,m)、(1,m)是抛物线y=2x2+bx+3的两点,则b=______.
某花圃用花盆培育某种花苗,原来每盆植入3株花苗时,平均每株可盈利3元.经过试验发现若每盆多植入1株花苗,则平均每株盈利就减少0.5元.为使每盆培育花苗的盈利达到10元,则每盆应该植入花苗多少株?
要使式子在实数范围有意义,则x的取值范围为 .
已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为 cm2.
如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BCA=115°,则∠A的度数为( )
A.40° B.45° C.50° D.55°
如图,在平面直角坐标系中,长方形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为
已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.
(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.
(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;
(3)若BD=CD,直接写出∠BAD的度数.