题目内容

10.抛物线y=x2-2x-8与x轴的交点坐标是(4,0)(-2,0).

分析 要求抛物线与x轴的交点,即令y=0,解方程即可.

解答 解:令y=0,则x2-2x-8=0.
(x-4)(x+2)=0
解得x=4或x=-2.
则抛物线y=x2-2x-8与x轴的交点坐标是(4,0),(-2,0).
故答案为:(4,0),(-2,0).

点评 本题考查了抛物线与x轴的交点.关键是掌握求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网