题目内容

如图,将长方形纸片ABCD的一角沿EF折叠,使其落在纸片所在的平面内,点A的对应点为A′,再折叠另一角使B点的对应点B′落在射线EA′上,折痕为EG,那么∠FEG的度数为________.

90°
分析:根据折叠的性质得到∠AEF=∠A′EF,∠BEG=∠B′EG,再根据平角的定义得到∠AEF+∠A′EF+∠BEG+∠B′EG=180°,即可得到∠FEG的度数.
解答:∵长方形纸片的一角折叠,顶点A落在A′处,另一角折叠,顶点B落在EA′上的B′点处,
∴∠AEF=∠A′EF,∠BEG=∠B′EG,
而∠AEF+∠A′EF+∠BEG+∠B′EG=180°,
∴∠A′EF+∠B′EG=90°,即∠FEG=90°.
故答案为90°.
点评:本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了平角的定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网