题目内容
【题目】如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.
![]()
(1)求证:△BGD∽△DMA;
(2)求证:直线MN是⊙O的切线.
【答案】(1)详见解析;(2)详见解析
【解析】试题分析(1)∵MN⊥AC于点M,BG⊥MN于G,
∴∠BGD=∠DMA=90°.
∵以AB为直径的⊙O交BC于点D,∴AD⊥BC,∠ADC=90°,
∴∠ADM+∠CDM=90°,
∵∠DBG+∠BDG=90°,∠CDM=∠BDG,
∴∠DBG=∠ADM.
在△BGD与△DMA中,
,∴△BGD∽△DMA;
(2)连结OD.∵BO=OA,BD=DC,
∴OD是△ABC的中位线,∴OD∥AC.∵MN⊥AC,BG⊥MN,
∴AC∥BG,∴OD∥BG,∵BG⊥MN,∴OD⊥MN,
∴直线MN是⊙O的切线.
练习册系列答案
相关题目