题目内容
(1)计算:(﹣2)﹣1﹣|﹣|+(﹣1)0+cos45°.
(2)已知m2﹣5m﹣14=0,求(m﹣1)(2m﹣1)﹣(m+1)2+1的值.
计算:(﹣1)0+|2﹣|+3tan30°
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);
(3)在点E从B向O运动的过程中,完成下面问题:
①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
②当DE经过点O时,请你直接写出t的值.
【答案】(1)直线AB的解析式为;(2)S=﹣t2+t;
(3)四边形QBED能成为直角梯形.①t=;②当DE经过点O时,t=或.
【解析】分析:(1)首先由在Rt△AOB中,OA=3,AB=5,求得OB的值,然后利用待定系数法即可求得一次函数的解析式;(2)过点Q作QF⊥AO于点F.由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得的面积S与t之间的函数关系式;(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;②根据题意可知即时,则列方程即可求得t的值.
详【解析】(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴.解得
∴直线AB的解析式为
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3?t.
由△AQF∽△ABO,得
∴
(3)四边形QBED能成为直角梯形,
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时
由△APQ∽△ABO,得
解得
如图3,当PQ∥BO时,
∴DE⊥BO,四边形QBED是直角梯形.
由△AQP∽△ABO,得
即
3t=5(3?t),
3t=15?5t,
8t=15,
(当P从A向0运动的过程中还有两个,但不合题意舍去).
②当DE经过点O时,
∵DE垂直平分PQ,
∴EP=EQ=t,
由于P与Q相同的时间和速度,
∴AQ=EQ=EP=t,
∴∠AEQ=∠EAQ,
∵
∴∠BEQ=∠EBQ,
∴BQ=EQ,
所以
当P从A向O运动时,
过点Q作QF⊥OB于F,
EP=6?t,
即EQ=EP=6?t,
AQ=t,BQ=5?t,
解得:
∴当DE经过点O时, 或.
点睛:本题考查知识点较多,勾股定理,待定系数法求一次函数解析式,相似三角形的判定与性质等知识点,熟练掌握和运用各个知识点是解题的关键.
【题型】解答题【结束】21
如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(-6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.
一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A. 6π B. 4π C. 8π D. 4
学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).
(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 ;
(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.
若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为_____.
下列图案中,不是中心对称图形的是( )
A. B. C. D.
已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△AnBnCn的周长为_____.
计算(﹣a3)2的结果是( )
A. a6 B. ﹣a6 C. ﹣a5 D. a5