题目内容
设一组数据是x1,x2,…,xn,它们的平均数是
,方差s2=
[(x1-
)2+(x2-
)2+…+(xn-
)2].
(Ⅰ)证明:方差也可表示为s2=
(
+
+…+
)-
2;并且s2≥0,当x1=x2=…=xn=
时,方差s2取最小值0;
(Ⅱ)求满足方程x2+(y-1)2+(x-y)2=
的一切实数对(x,y).
| . |
| x |
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
(Ⅰ)证明:方差也可表示为s2=
| 1 |
| n |
| x | 21 |
| x | 22 |
| x | 2n |
| . |
| x |
| . |
| x |
(Ⅱ)求满足方程x2+(y-1)2+(x-y)2=
| 1 |
| 3 |
(1)∵s2=
[(x1-
)2+(x2-
)2+…+(xn-
)2],
=
[x12+(
) 2-2x1
+x22+(
) 2-2x2
+…+xn2+(
) 2-2xn
],
=
(x12+x22+…+xn2)+
((
) 2+(
) 2+…+(
) 2)+
(-2x1
-2x2
-…-2xn
],
=
(x12+x22+…+xn2)+(
) 2+
(-2x1
-2x2
-…-2xn
],
=
(x12+x22+…+xn2)+(
) 2-2
(x1+x2+…+xn],
=
(x12+x22+…+xn2)-(
) 2,
∴s2=
(
+
+…+
)-
2;
当x1=x2=…=xn=
时,
s2=(
) 2-(
) 2=0,
∴此时方差s2取最小值0;
(2)设数据-x,(y-1),x-y的平均数为:
=
[(-x)+(y-1)+(x-y)],
=-
,
方差s2=
[x2+(y-1)2+(x-y)2]-(
)2=
-(-
)2,
当且仅当-x=y-1=x-y=
=-
时,
s2=0,
此时x=
,y=
.
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
=
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
| . |
| x |
| . |
| x |
| . |
| x |
=
| 1 |
| n |
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
=
| 1 |
| n |
| . |
| x |
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
=
| 1 |
| n |
| . |
| x |
| . |
| x |
| 1 |
| n |
=
| 1 |
| n |
| . |
| x |
∴s2=
| 1 |
| n |
| x | 21 |
| x | 22 |
| x | 2n |
| . |
| x |
当x1=x2=…=xn=
| . |
| x |
s2=(
| . |
| x |
| . |
| x |
∴此时方差s2取最小值0;
(2)设数据-x,(y-1),x-y的平均数为:
| . |
| a |
| 1 |
| 3 |
=-
| 1 |
| 3 |
方差s2=
| 1 |
| 3 |
| . |
| a |
| 1 |
| 9 |
| 1 |
| 3 |
当且仅当-x=y-1=x-y=
| . |
| a |
| 1 |
| 3 |
s2=0,
此时x=
| 1 |
| 3 |
| 2 |
| 3 |
练习册系列答案
相关题目