题目内容
已知:如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.
1.求∠PCQ的度数
2.求证:∠APB=∠QPC.
如图,在Rt△ABC中,∠C=90°,O,D分别为AB,BC上的点,经过A,D两点的⊙O分别交AB,AC于点E,F,且D为弧EF的中点.
(1)求证:BC与⊙O相切;
(2)当⊙O的半径r=2,∠CAD=30°时,求劣弧AD的长.
如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.
一组数据1,2,3,3,5,4,10的中位数与众数分别是 ( )
A. 3,3 B. 5,3 C. 3,4 D. 5,10
以方程组的解为坐标的点(x,y)在平面直角坐标系中位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
如图,矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=2:1.则∠ACE的度数为______.
如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
如图,抛物线C1:y=-x2+2x的顶点为A,与x轴的正半轴交于点B.
(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的表达式;
(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,求抛物线C2的表达式(用k表示);
(3)在(2)条件下,点P在抛物线C2上,满足S△PAC=S△ABC,且∠ACP=90°.当k>1时,求k的值.
某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)