题目内容
(6分)如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD,试猜想线段CE、BD之间的数量关系,并说明理由.
若,则的值为 .
如图,在平面直角坐标系中,抛物线y=-x2+bx+c与y轴交于点A(0,3),且经过点(5,-2),点B与点A关于对称轴对称,过点B作BC⊥x轴,垂足为C,连结OB.
(1)求二次函数的解析式,并求出点B的坐标.
(2)把△AOB以每秒1个单位的速度向右平移,得到△PDE,PE交OB于点F,PD交BC于点M,设向右平移运动的时间为t(s).设平移过程中与△OBC重叠部分的面积为S,试探求S 与t的函数关系式,并求当t为何值时,S最大?
(3)在(2)的条件下,是否存在某一时刻t,使△OCE为等腰三角形?若存在,求出t;若不存在,请说明理由.
若三角形的两条边长分别为6cm和10cm,则它的第三边不可能为( )cm.
A. 5 B.8 C.10 D.17
下列各数中,最小的实数是( )
A. B.-2 C.0 D.-
(3分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,若CE=12,CF=9,则OC的长是 .
(2分)某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为45°,下方是一个直径为70cm,高为100cm的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()
A.30cm B.35cm C.35cm D.65cm
(本小题6分)如图,已知平行四边形ABCD中,E、F分别BC、AD边上,AE=BF,AE与BF交于G,ED与CF交于H.
求证:(1)GH∥BC;(3分)
(2)GH=AD(3分)
已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A.1 B.2 C.3 D.4