题目内容
已知
=
=
≠0,则
=
.
| x |
| 3 |
| y |
| 4 |
| z |
| 2 |
| 2x2-2y2+5z2 |
| xy+yz+zx |
| 3 |
| 13 |
| 3 |
| 13 |
分析:由
=
=
≠0,即可设
=
=
=k,则可求得x=3k,y=4k,z=2k,然后代入
,即可求得答案.
| x |
| 3 |
| y |
| 4 |
| z |
| 2 |
| x |
| 3 |
| y |
| 4 |
| z |
| 2 |
| 2x2-2y2+5z2 |
| xy+yz+zx |
解答:解:设
=
=
=k,
∴x=3k,y=4k,z=2k,
∴
=
=
=
.
故答案为:
.
| x |
| 3 |
| y |
| 4 |
| z |
| 2 |
∴x=3k,y=4k,z=2k,
∴
| 2x2-2y2+5z2 |
| xy+yz+zx |
| 18k2-32k2+20k2 |
| 12k2+8k2+6k2 |
| 6k2 |
| 26k2 |
| 3 |
| 13 |
故答案为:
| 3 |
| 13 |
点评:此题考查了比例的性质.此题难度适中,解题的关键是注意掌握由
=
=
≠0,即可设
=
=
=k的解题方法.
| x |
| 3 |
| y |
| 4 |
| z |
| 2 |
| x |
| 3 |
| y |
| 4 |
| z |
| 2 |
练习册系列答案
相关题目