题目内容
分析:由BE⊥CD及∠EBF=60°,可得∠A的大小,即可得出∠C的大小,则在Rt△BCF中可求解BC的长,即AD的长,进而在Rt△ABF中求出BF的长,进而可求解结论.
解答:解:∵ABCD是平行四边形,BE⊥CD,∠EBF=60°,
∴∠ABF=30°,
又∵BF⊥AD,
∴∠A=60°,即∠C=60°,
在Rt△BCE中,∠C=60°,CE=2,
则可得BC=4,即AD=BC=2CE=4,
又∵DF=1,
∴AF=3,
在Rt△ABF中,则可得BF=3
,
∴S平行四边形=AD•BF=4×3
=12
.
∴∠ABF=30°,
又∵BF⊥AD,
∴∠A=60°,即∠C=60°,
在Rt△BCE中,∠C=60°,CE=2,
则可得BC=4,即AD=BC=2CE=4,
又∵DF=1,
∴AF=3,
在Rt△ABF中,则可得BF=3
| 3 |
∴S平行四边形=AD•BF=4×3
| 3 |
| 3 |
点评:本题主要考查了平行四边形的性质及30°直角三角形的求解问题,能够熟练掌握并能进行一些简单的计算.
练习册系列答案
相关题目