题目内容
完成证明并写出推理根据:
已知,如图,∠1=132°,∠ACB=48°,∠2=∠3.
求证:∠CDB=∠FHB.
证明:
∵∠1=132°,∠ACB=48° (已知)
∴∠1+∠ACB=180°
∴DE∥BC ( )
∴∠2=∠ ( )
又∵∠2=∠3 (已知)
∴∠3=∠ (等量代换)
∴HF∥DC ( )
∴∠CDB=∠FHB ( )
如图,某汽车从A处出发准备开往正北方向M处,但是由于AM之间道路正在整修,所以需先到B处,再到M处,若B在A的北偏东25°,汽车到B处发现,此时正好BM=BA,则汽车要想到达M处,此时应沿北偏西________的方向行驶.
若不等式 组 有3个整数解,则a的取值范围是_____________。
如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC﹣BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,已知△ABC为等边三角形,高AH=5cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为_________cm.
求下列方程中的x的值:
(1)(2x-1)2﹣121=0
(2)2(x+2)3+128=0
已知+|b+2|=0,则ba=_______.
图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n=.
如果图③和图④中的圆圈都有13层.
(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是___;
(2)我们自上往下,在图④每个圆圈中填上一串连续的整数?23,?22,?21,?20,…,求最底层最右边圆圈内的数是___;
(3)求图④中所有圆圈中各数之和.(写出计算过程)
2的立方根是( )
A. B. C. D.