题目内容
如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF的面积比为( )
A.1:2 B.1:4 C.4:9 D.1:3
已知:如图,点A、B、C为⊙O上的点,点D在OC的延长线上,∠CBA=∠CDA=30°.
(1)求证:AD是⊙O的切线;
(2)若OD⊥AB于M,BC=5,求DC的长.
如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )
A. B.﹣1 C.2﹣ D.
如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为( )
A.6π B.5π C.3π D.2π
如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为( )
A.5m B.m C.m D.m
已知:如图,在矩形ABCD中,AC是对角线,AB=4cm,BC=3cm.点P从点A出发,沿AC方向匀速运动,速度为1cm/s,同时,点Q从点B出发,沿BA方向匀
逨运动,速度为1cm/s,过点P作PM⊥AD于点M,连接PQ,设运动时间为t(s)
(0<t<4).解答下列问题:
(1)当t为何值时,四边形PQAM是矩形?
(2)是否存在某一时刻t,使S四边形PQAM=S矩形ABCD?若存在,求出t的值;若不存在,请说明理由.
(3)当t为何值时,△APQ与△ABC相似?
解方程
(1)16x2+8x=3(公式法)
(2)x2+5x+5=0(配方法)
方程x=﹣x(x+1)的解是( )
A.x=﹣2 B.x=0 C.x1=﹣1,x2=0 D.x1=﹣2,x2=0
顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则DE= .