题目内容
【题目】如图,在平面直角坐标系
中,抛物线
与
轴交于
,
两点(点
在点
的左侧),经过点
的直线
与
轴交于点
,与抛物线的另一个交点为
,且
.
直接写出点
的坐标,并求直线
的函数表达式(其中
,
用含
的式子表示);
点
是直线
上方的抛物线上的一点,若
的面积的最大值为
,求
的值;
设
是抛物线对称轴上的一点,点
在抛物线上,以点
,
,
,
为顶点的四边形能否成为矩形?若能,求出点
的坐标;若不能,请说明理由.
![]()
【答案】(1)A(﹣1,0),
;(2)a=﹣
;(3)
点的坐标为
,
.
【解析】
(1)解方程即可得到结论;根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;
(2)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;
(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.
(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0).
∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k.
∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0.
∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣
=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;
(2)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=
(ax2﹣3ax﹣4a)(x+1)﹣
(ax2﹣3ax﹣4a)x=
(ax2﹣3ax﹣4a)=
a(x﹣
)2﹣
a,∴△ACE的面积的最大值=﹣
a.
∵△ACE的面积的最大值为
,∴﹣
a=
,解得:a=﹣
;
![]()
(3)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=﹣1,x2=4,∴D(4,5a).
∵抛物线的对称轴为直线x=1,设P(1,m),∴分两种情况讨论:
①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a).
∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,即a2=
.
∵a<0,∴a=
,∴P(1,
);
②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a).
∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2,即a2=
.
∵a<0,∴a=﹣
,∴P(1,﹣4).
综上所述:点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣
)或(1,﹣4).