题目内容
一个滑轮起重装置如图所示,滑轮的半径是20cm,当滑轮的一条半径绕着轴心按逆时针方向旋转的角度为时,则重物上升_____cm(结果保留).
取一张矩形的纸片进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1);
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B`,得Rt△AB`E,如图(2);
第三步:沿EB`线折叠得折痕EF,如图(3).
若AB=则EF的值是( ).
A. 1 B. 2 C. 3 D. 4
如图,15个形状大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则cos∠AEC=________.
如图,在Rt△ABC中,∠C=90°AB=8cm,cos∠ABC=,点D在边AC上,且CD=cm,动点P从点A开始沿边AB向点B以1cm/s的速度移动,当点P到达B点即停止运动.设运动时间为t(s).解答下列问题:
(1)M、N分别是DP、BP的中点,连接MN.
①分别求BC、MN的值;
②求在点P从点A匀速运动到点B的过程中线段MN所扫过区域的面积;
(2)在点P运动过程中,是否存在某一时刻t,使BD平分∠CDP?若存在,求出t的值;若不存在,请说明理由.
化简,再求值: ,其中.
分解因式:2b2-8b+8=________________.
的绝对值是( )
A. 3 B. C. D.
任意抛掷一枚均匀的骰子一次,朝上的点数大于5的概率等于___________.
(12分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.
(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.