题目内容


在平面直角坐标系中,O为原点,直线y =-2x-1与y轴交于点A,与直线y =-x交于点B, 点B关于原点的对称点为点C.

(1)求过ABC三点的抛物线的解析式;

(2)P为抛物线上一点,它关于原点的对称点为Q.

①当四边形PBQC为菱形时,求点P的坐标;

②若点P的横坐标为t(-1<t<1),当t为何值时,四边形PBQC面积最大,并说明理由.


解:(1)解方程组

∴点B的坐标为(-1,1).························ 1分

∵点C和点B关于原点对称,

∴点C的坐标为(1,-1).························ 2分

又∵点A是直线y=-2x-1与y轴的交点,

∴点A的坐标为(0,-1).························ 3分

设抛物线的解析式为y=ax2+bx+c

解得

∴抛物线的解析式为y=x2-x-1.······················ 5分

(2)①如图1,∵点P在抛物线上,

∴可设点P的坐标为(mm2-m-1).

当四边形PBQC是菱形时,O为菱形的中心,

PQ⊥BC,即点PQ在直线y = x上,

m = m2-m-1,····························· 7分

解得m = 1±.···························· 8分

∴点P的坐标为(1+,1+)或(1-,1-).··········· 9分

 


图1                                      图2

②方法一:

如图2,设点P的坐标为(tt2 - t - 1).

过点PPDy轴,交直线y = - x于点D,则Dt,- t).

分别过点BCBEPDCFPD,垂足分别为点EF.

PD = - t -( t2 - t -1) = - t2 + 1,BE + CF = 2,··········· 10分

∴SPBCPD·BE +PD·CF

PD·(BE + CF

(- t2 + 1)×2

=- t2 + 1.··························· 12分

=-2t2+2.

∴当t=0时,有最大值2. ···················· 13分

方法二:

如图3,过点By轴的平行线,过点Cx轴的平行线,两直线交于点D,连接PD.

∴SPBC=SBDC-SPBD-SPDC

×2×2-×2(t+1)-×2(t2-t-1+1)

=-t2+1.···························· 12分

=-2t2+2.

∴当t=0时,有最大值2. ···················· 13分

 


图3                                   图4

方法三:如图4,过点PPEBC,垂足为E,作PFx轴交BC于点F.

PE=EF.

∵点P的坐标为(tt2-t-1),

∴点F的坐标为(-t2+t+1,t2-t-1).

PF=-t2+t+1-t=-t2+1.

PE(-t2+1).·························· 11分

∴SPBCBC·PE××(-t2+1)

=-t2+1.···························· 12分

=-2t2+2.

∴当t=0时,有最大值2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网