题目内容
在平
面直角坐标系中,O为原点,直线y =-2x-1与y轴交于点A,与
直线y =-x交于点B, 点B关于
原点的对称点为点C.
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(-1<t<1),当t为何值时,四边形PBQC面积最大,并说明理由.
![]()
解:(1)解方程组
得![]()
∴点B的坐标为(-1,1).························ 1分
∵点C和点B关于原点对称,
∴点C的坐标为(1,-1).························ 2分
又∵点A是直线y=-2x-1与y轴的交点,
∴点A的坐标为(0,-1).························ 3分
设抛物线的解析式为y=ax2+bx+c,
∴
解得![]()
∴抛物线的解析式为y=x2-x-1.······················ 5分
(2)①如图1,∵点P在抛物线上,
∴可设点P的坐标为(m,m2-m-1).
当四边形PBQC是菱形时,O为菱形的中心,
∴PQ⊥BC,即点P,Q在直线y = x上,
∴m = m2-m-1,····························· 7分
解得m = 1±
.···························· 8分
∴点P的坐标为(1+
,1+
)或(1-
,1-
).··········· 9分
图1 图2
②方法一:
如图2,设点P的坐标为(t,t2 - t - 1).
过点P作PD∥y轴,交直线y = - x于点D,则D(t,- t).
分别过点B,C作BE⊥PD,CF⊥PD,垂足分别为点E,F.
∴PD = - t -( t2 - t -1) = - t2 + 1,BE + CF = 2,··········· 10分
∴S△PBC=
PD·BE +
PD·CF
=
PD·(BE + CF)
=
(- t2 + 1)×2
=- t2 + 1.··························· 12分
∴
=-2t2+2.
∴当t=0时,
有最大值2. ···················· 13分
方法二:
如图3,过点B作y轴的平行线,过点C作x轴的平行线,两直线交于点D,连接PD.
∴S△PBC=S△BDC-S△PBD-S△PDC
=
×2×2-
×2(t+1)-
×2(t2-t-1+1)
=-t2+1.···························· 12分
∴
=-2t2+2.
∴当t=0时,
有最大值2. ···················· 13分
图3
图4
方法三:如图4,过点P作PE⊥BC,垂足为E,作PF∥x轴交BC于点F.
∴PE=EF.
∵点P的坐标为(t,t2-t-1),
∴点F的坐标为(-t2+t+1,t2-t-1).
∴PF=-t2+t+1-t=-t2+1.
∴PE=
(-t2+1).·························· 11分
∴S△PBC=
BC·PE=
×
×
(-t2+1)
=-t2+1.···························· 12分
∴
=-2t2+2.
∴当t=0时,
有最大值2.