题目内容


如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为      cm.


 42 cm.

【考点】旋转的性质.

【分析】根据将△ABC绕点B顺时针旋转60°,得到△BDE,可得△ABC≌△BDE,∠CBD=60°,BD=BC=12cm,从而得到△BCD为等边三角形,得到CD=BC=CD=12cm,在Rt△ACB中,利用勾股定理得到AB=13,所以△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD,即可解答.

【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,

∴△ABC≌△BDE,∠CBD=60°,

∴BD=BC=12cm,

∴△BCD为等边三角形,

∴CD=BC=CD=12cm,

在Rt△ACB中,AB==13,

△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),

故答案为:42.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网