题目内容
如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④
;⑤M到AD的距离等于BC的一半;其中正确的有( )
![]()
A.2个 B.3个 C.4个 D.5个
D【考点】全等三角形的判定与性质;角平分线的性质.
【分析】过M作ME⊥AD于E,得出∠MDE=
∠CDA,∠MAD=
∠BAD,求出∠MDA+∠MAD=
(∠CDA+∠BAD)=90°,根据三角形内角和定理求出∠AMD,即可判断①;根据角平分线性质求出MC=ME,ME=MB,即可判断②和⑤;由勾股定理求出DC=DE,AB=AE,即可判断③;根据SSS证△DEM≌△DCM,推出S三角形DEM=S三角形DCM,同理得出S三角形AEM=S三角形ABM,即可判断④.
【解答】解:![]()
过M作ME⊥AD于E,
∵∠DAB与∠ADC的平分线相交于BC边上的M点,
∴∠MDE=
∠CDA,∠MAD=
∠BAD,
∵DC∥AB,
∴∠CDA+∠BAD=180°,
∴∠MDA+∠MAD=
(∠CDA+∠BAD)=
×180°=90°,
∴∠AMD=180°﹣90°=90°,∴①正确;
∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,
∴MC=ME,
同理ME=MB,
∴MC=MB=ME=
BC,∴②正确;
∴M到AD的距离等于BC的一半,∴⑤正确;
∵由勾股定理得:D
C2=MD2﹣MC2,DE2=MD2﹣ME2,
又∵ME=MC,MD=MD,
∴DC=DE,
同理AB=AE,
∴AD=AE+DE=AB+DC,∴③正确;
∵在△DEM和△DCM中
,
∴△DEM≌△DCM(SSS),
∴S三角形DEM=S三角形DCM
同理S三角形AEM=S三角形ABM,
∴S三角形AMD=
S梯形ABCD,∴④正确;
故选D.
【点评】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质
和判定等知识点的应用,主要考查学生运用定理进行推理的能力.
在创建国家卫生城市环境综合整治行动中,某小区计划对楼体外墙进行粉刷,现有甲、乙两家装饰公司有意承接此项工程.已知甲公司的费用y(元)与粉刷面积x(x≥100)(m2)的关系如表:
| 粉刷面积x(m2) | 100 | 200 | 300 | 400 | … |
| 费用y(元) | 2000 | 4000 | 6000 | 8000 | … |
乙公司表示:若该小区先支付3000元的基本承包费,则可按15元/m2的价格收费.请根据以上信息,解答下列问题:
(1)若甲公司收取的费用y(元)与粉刷面积x(m2)满足我们学过某一函数关系,试确定这一函数关系式;
(2)试确定乙公司收取的费用y(元)与粉刷面积x(x≥100)(m2)满足的函数关系式;
(3)在给出的平面直角坐标系内画出(1)(2)中的函数图象,并确定若该小区粉刷面积约为800m2,则选择哪家装饰公司进行施工更合算?
![]()