题目内容
如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.
证明:∵AB∥CD,CE∥AD,
∴四边形AECD是平行四边形.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB∥CD,
∴∠ACD=∠BAC=∠DAC,
∴AD=DC,
∴四边形AECD是菱形.
分析:首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.
点评:考查了平行四边形和菱形的判定,比较简单.
∴四边形AECD是平行四边形.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB∥CD,
∴∠ACD=∠BAC=∠DAC,
∴AD=DC,
∴四边形AECD是菱形.
分析:首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.
点评:考查了平行四边形和菱形的判定,比较简单.
练习册系列答案
相关题目
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|