题目内容
因式分【解析】xy2-x=____.
甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是( )
A.1 B. C. D.
如图,四边形 ABCD是菱形, E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是__________.
体育考试是西宁市中考考查科目之一,其成绩作为考生录取的重要依据之一.某中学为了了解学生体育活动情况,随机调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图(图1)和频数分布直方图(图2).根据图示,解答下列问题:
(1)在被调查的学生中“每天锻炼超过1小时”的学生有多少人?
(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;
(3)2013年西宁市初二学生约为1.2万人,按此调查,可以估计2013年西宁市区初二学生中每天锻炼未超过1小时的学生约有多少万人?
在数轴上点A,B对应的数分别为2,,且A,B两点关于原点对称,则x的值为____.
如图中的曲线是反比例函数y=图象的一支,则m的取值范围是
A.m>-5 B.0<m<5 C.-5<m<0 D.m<-5
(12分)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=+bx+c经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.
的算术平方根为
计算:
(1)+(-2)3 -()-2
(2)