题目内容

如图,AB是⊙O的直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当C在上半圆(不包括A、B两点)上移动时,点P


  1. A.
    到CD的距离保持不变
  2. B.
    位置不变
  3. C.
    随C点的移动而移动
  4. D.
    等分
B
连接OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.

解:连接OP,如图,
∵CP平分∠OCD,
∴∠1=∠2,
∵OC=OP,
∴∠1=∠3,
∴∠2=∠3,
∴OP∥CD,
又∵弦CD⊥AB,
∴OP⊥AB,
∴OP平分半圆APB,即点P是半圆的中点.
故选B.
本题考查了垂径定理及圆周角定理,即在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网