题目内容

如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若AC∥EF,试判断线段KG、KD、GE间的相等数量关系,并说明理由;
(3)在(2)的条件下,若sinE=
3
5
,AK=2
5
,求FG的长.
考点:圆的综合题
专题:
分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;
(2)KG2=KD•GE.如图2,连接GD.利用平行线的性质和圆周角定理得到∠KGD=∠E.又由(1)知∠KGE=∠GKE,则△GKD∽△EGK,所以由相似三角形的对应边成比例得到
KG
GE
=
KD
KG
,即KG2=KD•GE;
(3)如图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.
解答:解:(1)如图1,连接OG.
∵EG为切线,
∴∠KGE+∠OGA=90°.
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.

(2)KG2=KD•GE.理由如下:
如图2,连接GD.
AC∥EF,
∴∠C=∠E.
又∵∠C=∠AGD,
∴∠KGD=∠E.
又∵由(1)知∠KGE=∠GKE,
∴△GKD∽△EGK,
KG
GE
=
KD
KG
,即KG2=KD•GE;

(3)连接OG,OC,如图3所示.
sinE=sin∠ACH=
3
5
,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2
即(3t)2+t2=(2
5
2,解得t=
2

设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2
即(r-3t)2+(4t)2=r2,解得r=
25
6
t=
25
2
6

∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=
25
2
6
,tan∠OFG=tan∠CAH=
CH
AH
=
4
3

∴FG=
OG
tan∠OFG
=
25
2
6
4
3
=
25
2
8
点评:此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网