题目内容

16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,交AC于D点,且BC=1,求AB的长.

分析 先根据等腰三角形的性质、三角形内角和定理计算出图中各角的度数,易得AD=BD=BC,再证明△ABC∽△BCD,根据相似的性质得AC:BC=BC:CD,则AC:AD=AD:CD,然后根据黄金分割点的定义计算.

解答 解:∵AB=AC=2,
∴∠ABC=∠C=$\frac{1}{2}$(180°-∠A)=$\frac{1}{2}$(180°-36°)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=$\frac{1}{2}$∠ABC=36°,
∴∠A=∠ABD,
∴AD=BD,
∵∠BDC=∠A+∠ABD=72°,
∴∠BDC=∠C,
∴BD=BC,
∴AD=BD=BC=1,
∴∠A=∠CBD,∠C=∠C,
∴△ABC∽△BCD,
∴$\frac{AB}{BC}=\frac{BC}{CD}$,
即$\frac{AB}{1}=\frac{1}{AC-1}$
∵AB=AC,
∴$\frac{AB}{1}=\frac{1}{AB-1}$,
∴AB2-AB-1=0,
解关于AB的一元二次方程得:AB=$\frac{1±\sqrt{5}}{2}$,
∴AB=$\frac{\sqrt{5}+1}{2}$(舍去负值).

点评 本题考查了相似三角形的判定和性质,黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=$\frac{\sqrt{5}+1}{2}$AB≈0.618AB,并且线段AB的黄金分割点有两个.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网