题目内容
9.分析 设圆心为O,连接AO,BO,AC,AE,易证三角形AOB是等边三角形,确定∠EAC=30°,再利用弧长公式计算即可.
解答
解:设圆心为O,连接AO,BO,AC,AE,OF,
∵AB=6,AO=BO=6,
∴AB=AO=BO,
∴三角形AOB是等边三角形,
∴∠AOB=∠OAB=60°
同理:△FAO是等边三角形,∠FAB=2∠OAB=120°,
∴∠EAC=120°-90°=30,
∵AD=AB=6,
∴点D运动的路径长为:$\frac{30×π×6}{180}$=π.
故答案为:π.
点评 本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.
练习册系列答案
相关题目
20.
如图,正比例函数y1=k1x和反比例函数y2=$\frac{{k}_{2}}{x}$的图象交于A(1,2),B(-1,-2)两点,若y1<y2,则x的取值范围是( )
| A. | x<-1或x>1 | B. | x<-1或0<x<1 | C. | -1<x<0或0<x<1 | D. | -1<x<0或x>1 |