题目内容
要调查下列问题,你认为哪些适合抽样调查( )
①市场上某种食品的某种添加剂的含量是否符合国家标准
②检测某地区空气质量
③调查全市中学生一天的学习时间.
A.①② B.①③ C.②③ D.①②③
已知,如图,△ABC的三个顶点A,B,C在以AD直径的圆上,且AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)若∠BCD=∠BAD,请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0
其中正确结论的有( )
A.①②③ B.①②④ C.①③④ D.②③④
一个班级有40人,一次数学考试中,优秀的有18人.在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是 .
已知等腰三角形的两边长是5cm和6cm,则此三角形的周长是( )
A.16cm B.17cm C.11cm D.16cm或17cm
如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(-1,5),B(-1,0),C(-4,3).
(1)画出△ABC关于y轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)
(2)写出A1、B1、C1的坐标; (3)求出△A1B1C1的面积.
已知:如图,△ABD≌△EBC,且∠1=∠2,AB=BE,则AD=________,∠C=_________。
在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.
一个扇形的半径为8cm,弧长为πcm,则扇形的圆心角为 .