题目内容
12.已知a,b,c分别为等腰△ABC的三边长,其中a=5,若关于x的方程x2+(b+2)x+(-b+6)=0有两个相等的实数根,求△ABC的周长.分析 若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.
解答 解:∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
解得b=2,b=-10(舍去);
①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
答:△ABC的周长是12.
点评 此题考查了根与系数的关系、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.
练习册系列答案
相关题目
2.某技能培训学校对120名学员的操作技能进行了考核,并随机抽取了30名学员的成绩,统计结果如表所示:
(Ⅰ)求本次随机抽取的样本数据的平均数、众数和中位数;
(Ⅱ)从全部获得100分的学员中随机选派2人参加全市的操作技能大赛,小明的成绩恰好是100分,估计小明被选中的概率是多少?
| 分数 | 100 | 95 | 90 | 85 | 80 | 75 |
| 人数 | 2 | 6 | 10 | 4 | 6 | 2 |
(Ⅱ)从全部获得100分的学员中随机选派2人参加全市的操作技能大赛,小明的成绩恰好是100分,估计小明被选中的概率是多少?