题目内容

10、给出下列算式:
32-12=8=8×1,52-32=16=8×2
72-52=24=8×3       92-72=32=8×4

观察上面算式,那么第n个算式可表示为
(2n+1)2-(2n-1)2=8n
分析:左边是相邻奇数的平方差,右边是8的倍数,根据奇数的不同表示写出算式,再利用平方差公式计算即可.
解答:解:左边是从3开始的奇数列的平方减去从1开始的奇数列的平方,右边是8的倍数,
∴用数学式子表示为(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n×2=8n.
故答案为:(2n+1)2-(2n-1)2=8n.
点评:本题考查了平方差公式的运用,读懂题目信息,写出奇数列的两种不同表示是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网