题目内容

如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于
 
考点:切线的性质
专题:
分析:连接OC,求出∠OCE=90°,求出∠A=∠ACO=30°,根据三角形外角性质求出∠COE=60°,即可求出答案.
解答:解:
连接OC,
∵EC切⊙O于C,
∴∠OCE=90°,
∵∠CDB=30°,
∴∠A=∠CDB=30°,
∵OA=OC,
∴∠ACO=∠A=30°,
∴∠COE=30°+30°=60°,
∴∠E=180°-90°-60°=30°,
故答案为:30°.
点评:本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质的应用,此题比较好,综合性比较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网