题目内容

如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E 分别在AB、BC边上,BD=BE=1.沿直线将△BDE翻折,点B落在点B′处.则点B′的坐标为( )

A.(1,2)
B.(2,1)
C.(2,2)
D.(3,1)
【答案】分析:首先根据折叠可以得到B′E=BE,B′D=BD,又点B的坐标为(3,2),BD=BE=1,根据这些条件即可确定B′的坐标.
解答:解:∵矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2),
∴CB=3,AB=2,
又根据折叠得B′E=BE,B′D=BD,而BD=BE=1,
∴CE=2,AD=1,
∴B′的坐标为(2,1).
故选B.
点评:此题主要考查了折叠问题,解题的关键是利用折叠的隐含条件得到相等的线段,然后利用线段的长度即可确定点的坐标.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网